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Differentiable Simulations for R&D

Abstract

Traditional physics-based simulations excel at modelling well-understood systems but of-
ten struggle with cutting-edge hardware R&D, where they are plagued by a simulation-reality
gap that stems from our incomplete understanding of these novel technologies. This paper
presents the idea of an Al Physicist, a novel approach combining differentiable physics simu-
lations with machine learning to create digital twins that can learn from real-world data. By
making physics equations differentiable, the system enables automated model learning, op-
timal control, and experiment design - capabilities that accelerate R&D cycles by orders of
magnitude. We also demonstrate the approach through a case study in quantum computing,
where the Qruise Al Physicist identified and resolved critical hardware issues in the operation
of superconducting qubits in mere hours rather than several months. We then discuss a longer
term roadmap for a general purpose Al Physicist.

1 Introduction

1.1 The Simulation-Reality Gap in Physics-centric R&D

Deep-tech R&D refers to technology development based on significant scientific or engineering
breakthroughs, such as advanced Al, guantum computing, biotechnology, or novel materials. These
companies are “deep” because they’re based on cutting-edge research that may have taken years
to develop in labs or universities. Physics-centric R&D is a subset of deep-tech that emphasises
ventures where the main challenge is the physics of the devices, e.g., low-field MR, silicon photon-
ics, or fusion reactors.

In physics-centric R&D, the standard workflow follows a predictable pattern: design, simulate, it-
erate until the predicted performance meets the design goals; then build, test, and if performance
does not match expectation, debug the issues and iterate. Simulations tend to match reality for
well-understood technologies, such as electric motors or low-speed airflow, but when R&D pushes
beyond the state-of-the-art into the development of new technologies, our understanding of the
device is often incomplete. We face physical effects not yet captured by existing models, larger-
than-expected manufacturing variations, and sensitivities to operational environments that aren’t
fully accounted for, among other challenges.

These gaps in understanding translate into a simulation-reality gap, resulting in devices whose per-
formance fails to meet simulation benchmarks. Eliminating this gap requires deeper insight into the
performance bottlenecks of these devices and is key to advancing physics-centric technologies,
such as quantum computing and photonics.

Traditional simulation software, such as the widely used tools from Ansys, Dassault, or MathWorks,
excel at modelling well-understood phenomena, but fall short when dealing with:
» Novel physics-centric technologies such as neuromorphic computing or silicon photonics

« Systems with significant unknown parameters typical of new technologies where the fabri-
cation processes are often not reproducible or sufficiently mature

« Determination of physics models from real-world data, ak.a. the Inverse Problem. These
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data-to-model workflows are critical for developing new technologies, as they help close
the simulation-reality gap and uncover missing elements in first-principle models

+ Real-time adaptation based on device feedback, which is key to the design-fabricate-test-
redesign iteration cycle

1.2 The Emergence of Differentiable Programming

Recent advances in machine learning have introduced differentiable programming, a paradigm that
treats entire programs as mathematical functions whose gradients can be computed automatically.
This breakthrough enables the same learning techniques that revolutionised neural networks to
be applied to physics simulations, unlocking unprecedented capabilities for data-driven system
identification and optimisation.

2 Differentiable simulations: core technology

2.1 Mathematical Foundation

A simulation can be viewed as a mathematical function f(z1,x2,...,z,) that maps model and
control parameters to observed (measured) values.

In traditional physics-based modelling, the simulation will most often include solving differential
equations, such as an equation of motion or a state equation. The process of solving these equa-
tions will normally include discretisation, which replaces the gradients in time and space within the
differential equations with finite differences between discrete points. Discretisation of the time
axis forms the basis of time-propagation methods such as Runge-Kutta. Discretisation of spatial
dimensions is often termed finite element modelling or finite volume modelling, depending on the
details.

We now consider the partial derivatives of the simulation function, f(x1, ze, . .., z,), with respect to
the model and control parameters: 887{(1, 6%, ce %. Automatic differentiation (AD) [1] is a tech-
nique for precise and efficient evaluation of derivatives for functions implemented as computer
programs. A differentiable simulation computes both f and 8%, 8%, e % simultaneously by
ensuring that each computational step used to compute f also produces the corresponding gra-
dient information. This is implemented through a computational graph framework as explained in

detail in Fig. 1.

Prior to the advent of AD, creation of differentiable simulations was a daunting, but not impossible,
task. For example, one could construct a bespoke method for a differentiable simulation of the
Schrodinger equation for discrete quantum-mechanical systems for the purposes of optimal con-
trol, a method known as GRAPE [2]. We note that the differentiability of the physics simulation as a
whole (as enabled by AD) is a software feature, i.e., it allows programmatic evaluation of gradients.
This concept is distinct from the differentiability inherent in physics simulations, which are often
based on differential equations.

AD enabled a much more flexible and robust approach to differentiable physics simulations [3-5],
along with powerful optimisation algorithms that efficiently explore high-dimensional parameter
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Computational Graph: f(x,y) = (x +y) * sin(x)
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Figure 1: Computational graph for automatic differentiation of the function f(z,y) = (z + y) X sin(x)
demonstrating the AD forward and backward passes. The AD process operates through a two-phase com-
putation on the directed acyclic graph structure. During the forward pass, function values are computed
by following the directed graph from input nodes through intermediate operations to the final output, with
each node storing its computed value for later use. The backward pass then computes gradients using the
chain rule by flowing backward through the graph, where each node calculates and accumulates gradients
from all outgoing paths. Each node in the computational graph stores both its forward-computed value
and its backward-computed gradient, enabling simultaneous computation of function values and deriva-
tives. Gradients accumulate at nodes with multiple incoming paths, properly implementing the chain rule’s
summation requirement for partial derivatives in complex computational expressions. The graph here shows
input variables z = 2.0 and y = 1.0 (blue circles) flowing through intermediate operations: addition (+, or-
ange rounded rectangle), sine function (sin, purple rounded rectangle), and multiplication (x, green rounded
rectangle). Each node displays both its forward-computed value (val) and backward-computed gradient
(grad). Solid black arrows indicate the forward pass direction where function values are computed following
the directed acyclic graph structure. Dashed red arrows show the backward pass where gradients flow in
reverse direction using the chain rule of differentiation.

spaces to fit models to experimental data. Deep learning algorithms are, under-the-hood, efficient
optimisation routines. AD brings this same capability — parameter optimisation and learnability —
to physics-based system models. See Fig. 2 for more details.

In the next sections, we briefly review how automatic differentiation (AD) compares to more tradi-
tional techniques such as symbolic and numerical differentiation, offering unique advantages over
both approaches.

Symbolic Differentiation

Symbolic differentiation manipulates mathematical expressions algebraically to produce the exact
derivative formulas. For example, given f(z) = 2% + sin(z), it would produce f'(z) = 2z + cos(z)
as a new symbolic expression.

Advantages: Produces exact results with no numerical error, and the derivative formula can be
reused for any input values.

Disadvantages: Expression size swells exponentially larger as derivatives of complex functions
are often more complex than the original. Symbolic differentiation also struggles with conditional
statements, loops, and other programming constructs that don't translate well to symbolic math-
ematics.
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Finite Difference Methods

Finite differences (FD) approximate derivatives using

oy FE 1) = @)
@) = R

for small h or similar definitions.
Advantages: Simple to implement and works with any black-box function.

Disadvantages: Inherent approximation error that creates a trade-off: larger h gives truncation
error, smaller h gives round-off error due to floating-point precision limits in the calculation of f.
Computing gradients of functions with many inputs requires many function evaluations (at least
n + 1 for n variables), making it expensive for high-dimensional problems.
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Figure 2: Any good learning algorithm is, at its core, an optimisation process minimising a function that
measures the distance between what is and what should be, typically termed a loss function. Here, we
show how quickly a loss function can be minimised depending on whether the learning/optimisation process
uses a differentiable simulation. In this example, the loss function depicts the predicted error rate of a
quantum gate. The z-axis indicates the running time of the learning process. The speed and accuracy
of the optimisation is denoted for a differentiable (blue) vs a non-differentiable (red) simulation. It’s clear
that differentiability offers several orders of magnitude improvement for both metrics, demonstrating how
learning without differentiability is practically infeasible. Figure adapted from [4].

Automatic Differentiation

AD computes exact derivatives by applying the chain rule systematically during program execution.
It treats programs as sequences of elementary operations (addition, multiplication, sin, cos, etc.)
and accumulates derivatives alongside the original computation (see Fig. 1 for details).

Forward mode AD: Propagates derivatives in the same direction as the original computation. Ef-
ficient when you have few inputs and many outputs.

Reverse mode AD (back-propagation): Propagates derivatives backward through the compu-
tation graph. Efficient when you have many inputs and few outputs, which is why it’s dominant in
machine learning.

Key advantages of AD:
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Produces machine-precision accurate derivatives (no approximation error)

Computational cost is only a small constant factor compared to evaluation of the original
function

Handles arbitrary program control flow, conditionals, and loops

+ No expression swell issues

Disadvantages: Requires either source code transformation or operator overloading, and can have
higher memory requirements (especially reverse mode) due to storing intermediate gradient values.

2.2 Implementation Challenges for Differentiable Physics Simulation

Creating differentiable physics simulations requires fundamental changes to the simulation engine
architecture:

1. Computational graph design: Simulations must be structured as computational graphs
similar to neural networks.

2. Automatic differentiation: All mathematical operations must support gradient computa-
tion.

3. ML software stack integration: Must be implemented using frameworks like TensorFlow or
JAX [6] for AD.

4. Numerical stability: Ensuring gradients remain well-behaved through complex physics cal-
culations.

Critically, differentiability cannot be retrofitted into existing simulation engines; it must be es-
tablished as a core design principle from the outset.

2.3 Comparison with Alternative Approaches

Most existing R&D simulations are typically one of the following two types:

«+ Physical modelling based on well-explained phenomena and highly accurate dynamics. These
are computationally heavy but great for traditional engineering applications such as automo-
tives or electric motors. However, such simulators are incapable of learning from real-world
data to fill gaps in first-principles modelling.

« Neural-network-based simulators that are trained on physics simulations (shifting computa-
tional costs to training time) to produce approximately accurate dynamics (amortised com-
putation) and can learn from data. These surrogate models are great for fast, approximate
solutions, but they lack any explainability or insights into underlying physical phenomena.
Moreover, the learned behaviour cannot be back-propagated from neural networks to the
physics simulation, e.g., for optimising parameters.
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Simulation type Accuracy Learn from Physical Computational
data? insight? cost
Legacy physics Very high X Perfect High
Neural networks Low-medium v None Low
Differentiable physics Very high v Perfect Medium

Table 1: Comparison of simulation approaches

The unique strength of differentiable physics simulations stems from the combination of the accu-
racy and interpretability of physics-based models with the learning capabilities of machine learning
systems. This is summarised in Table 1. It’s important to note here that methods such as physics
informed neural networks (PINN) [7], which promise to provide explainability to neural-network-
based models are typically extremely brittle, unreliable and finicky in practice and often do not
work for any form of complex physics models of practical relevance [8-11].

3 What can we do with differentiable simulations?

An Al Physicist built on top of differentiable simulations delivers unique and significant value to
organisations developing physics-centric technologies. The combination of first-principles sim-
ulations with machine learning through differentiable programming bridges the simulation-reality
gap and allows unprecedented speed, accuracy, and intelligence in the R&D process [12-17].

3.1 Performance Advantages

Experimental results demonstrate that differentiable optimisation provides dramatic speed im-
provements over gradient-free methods [18-20]. Fig. 2 discusses a concrete example in design
of controls for quantum computing where the differentiable approach shows convergence in ~50
iterations while the non-differentiable approach typically plateaus at a non-optimal solution after
500+ iterations with 1000x slower convergence. The performance advantage of differentiable
simulations is required to make complex multi-parameter optimisation practical, allowing for re-
alistic system models with hundreds and thousands of adjustable parameters. To make these en-
hancements possible, the Al Physicist fundamentally changes the R&D workflow:

Traditional Cycle: Design — Simulate — Build — Test — Debug — Redesign (months per iter-
ation)

Al physicist cycle: Design — Simulate — Build — Test — Auto-debug — Auto-optimise
(weeks per iteration)

The automated debug and optimisation phases, powered by differentiable simulations, eliminate
the most time-consuming and expertise-dependent steps.
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3.2 Scientific and Technical Value

Differentiable simulations enable automated system identification and real-time closed-loop opti-
misation, thus creating accurate, evolving digital twins that offer deep insight into device behaviour
and performance bottlenecks, as explained below:

« Automated system identification: Automatically extracts governing physics parameters
from sparse, noisy experimental data by solving the Inverse Problem without requiring hand-
crafted experiments.

+ Closed-loop optimisation: Enables real-time interaction with hardware by executing exper -
iments, refining models, and computing optimal control solutions in a continuous feedback
loop.

» True digital twins: Builds accurate, interpretable, physics-grounded digital twins that evolve
with the system and provide insight into performance-limiting effects such as decoherence,
noise, and signal distortion.

« Differentiable everything: A fully differentiable stack enables gradient-based optimisation
across hundreds of parameters with orders-of-magnitude acceleration compared to tradi-
tional gradient-free methods.

3.3 Business and Operational Value

Beyond advancing scientific understanding, differentiable simulation powered Al Physicists promise
a significant impact on both the overall R&D effort and the value delivered to host organisations:

+ 10-100x faster debug and calibration cycles: What previously required months of PhD-
level effort can now be executed in hours or days (see section 4.4). This drastically reduces
downtime in high-cost experimental setups (e.qg., dilution refrigerators, MRl magnets).

« Accelerated time-to-market: Reduced iteration times directly translate to faster develop-
ment cycles, critical in competitive industries like quantum computing, photonics, and med-
ical imaging.

+ Reduced dependence on scarce expertise: The Al Physicist captures and automates domain-
specific knowledge, enabling a small team of highly trained physicists and engineers to ac-
complish work that would previously have required significantly larger teams with equally
rare expertise.

» Improved yield and performance: Differentiable learning uncovers subtle failure modes and
performance bottlenecks, enabling systematic corrections that improve fidelity, efficiency,
and manufacturing yield.

» Scalable across domains: The framework generalises beyond quantum to MRI, NMR, EPR,
silicon photonics, and other fields with complex physics and limited data. As long as the
physics is simulable, it is optimisable.
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Accelerated physics-centric R&D enables faster development and deployment of transformative
technologies - from quantum computing to advanced medical imaging - directly impacting health-
care, energy, and information systems. By reducing time-to-discovery and lowering barriers to in-
novation, it empowers humanity to address complex global challenges with unprecedented speed
and precision.

4 The Qruise Al Physicist for quantum technologies

We now discuss a concrete implementation of a differentiable simulation based Al Physicist devel-
oped by Qruise with applications in quantum computing and sensing. We outline the broad archi-
tecture and briefly discuss the technical implementation before diving into an example use-case
of debugging operations in superconducting quantum computers.

41 System Overview

The Qruise Al Physicist operates as an autonomous research assistant that interacts directly with
hardware in real-time. It uses QruiseOS to plan and execute experiments that gather informative
data regarding the device under development. It then uses QruiseML to update comprehensive
physics models based on these experimental results and provides actionable insights for system
improvement. The software can also generate optimal control strategies for enhanced operation
of the device. This creates a closed-loop system where the digital twin continuously improves its
accuracy to match the physical device, and utilises this information to improve device performance.
The workflow of the Qruise Al Physicist is depicted in Fig. 3.

Closed loop Optimal

calibration control

N
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A A E
2: 2:
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Quantum processing unit learning High fidelity
with control electronics digital twin

Figure 3: Architecture of the Qruise Al Physicist. While the graphical elements suggest use for quantum
technologies, the architecture and most components do not change when applied to other verticals, with
the main difference being the differential equations implemented inside the digital twin.
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4.2 Technical Implementation

In this section we briefly discuss the technical implementation underpinning the Qruise Al Physicist
architecture described in Fig. 3.

421 Software Stack

The Al Physicist is built on modern Machine Learning software infrastructure such as TensorFlow
and JAX (and more recently Julia) to enable automatic differentiation. Custom differentiable solvers
have been developed for domain-specific use-cases. Additionally, the software is interfaced to the
hardware to allow real-time control of measurement systems. An extensive library of optimisation
algorithms, both gradient-based and (gradient-free with gradient-based) methods, allows effi-
cient exploration of design and parameter landscapes for a multitude of applications. All of this
is aided by a comprehensive visualisation tool that allows interactive exploration of the learned
models.

4.2.2 Integration Requirements

For successful deployment, the software must be able to interface with the control hardware to
enable connection to the experimental apparatus. High-throughput data collection is supported
through joint solutions developed with control electronics manufacturers. Some domain knowl-
edge of the relevant physics is needed to set up the initial baseline model. Since the algorithms
are physics-based, they can work with small sparse data but often benefit from the use of modern
computational accelerators such as GPUs for large-scale simulation and optimisation.

4.2.3 Deployment Modes

The software supports multiple deployment configurations:

Cloud-based For initial prototyping and non-sensitive applications
On-premise For security-critical applications and proprietary hardware
Hybrid For cases where a combination of cloud-based computation and local

data processing is preferred

4.3 Enabled Capabilities

The Qruise Al Physicist unlocks and enhances a host of capabilities for Al-driven science and engi-
neering:

+ Model learning: Automatically adjusts simulation parameters to match experimental obser-
vations, closing the simulation-reality gap through data-driven parameter estimation.
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« Model-based control: Learns optimal control sequences to achieve desired device be-
haviour, accounting for all known physics and learned system characteristics.

« Experiment design: Determines which experiments will provide maximum information to
improve the model, optimising the data collection process.

+ Error budget analysis: Quantifies how much each physical phenomenon limits device per-
formance, enabling predictive insights into limitations and failure modes.

The above capabilities are, in fact, optimisation problems. For example, model learning minimises
the difference between simulation predictions and real-world data. None of these would be prac-
tical without the differentiable simulations that allow for efficient gradient-based optimisation.

4.4 Case Study: Debugging Quantum Computing Hardware
4.41 Problem Description

Dr Lior Ella, Director of Research at Quantum Machines, encountered misbehaving qubits in a
QuantWare superconducting quantum processing unit (QPU). The misbehaviour could be broadly
summarised as the quantuminstructions, i.e., 2-qubit gates, not performing up to the expected per-
formance levels (as predicted by their calculations) in operational systems. Traditional debugging
approaches would require extensive manual analysis, parameter sweeps, and expert interpretation,
a process that typically takes months and that had so far not provided any concrete insights.

4.4.2 Al Physicist Intervention
In order to tackle the above problem, the Qruise Al Physicist was deployed with:
+ Input: Existing experimental data from the QPU (one and two qubit measurements)

» Goal: Identify the root cause and provide actionable solutions

« Constraints: Make do with available data - no additional device time allocated

4.4.3 Results

You can see the results generated by the Qruise Al Physicist in Fig. 4. Within hours, it:

1. Learned 83 system parameters of a two-qubit model from the available data.

2. Identified the root cause: Signal distortion as the signal goes from room temperature con-
trol electronics and through the cryogenic fridge to the superconducting QPU.

3. Provided quantitative analysis of the distortion characteristics.

4. Suggested corrective measures that could be immediately implemented.

10
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ideal (naive simulation) reality learned twin fixed (new reality)

Figure 4: Learning and fixing errors in 2-qubit gates for superconducting qubits. The steps are, left to right:
(a) A naive simulation of the idealised system where nothing is going wrong. (b) Actual data from the device
- clearly the system s behaving in a way which is very different than expected. (c) In order to fix the problem,
we must understand what is causing the misbehaviour. In other words, we need the model, i.e. the physics
equations, that reproduce the process. We apply Qruise’s model learning algorithms to identify the model
that replicates the observed behaviour. (d) Examining the learned physics model, it becomes clear the issue
is distortion of one of the control signals as it goes from room temperature to the superconducting qubits
at 0.03K - an unavoidable distortion, but one we can easily compensate for, resulting in behaviour which is
very close to the ideal.

To produce the above results, a differentiable model of the whole stack including the QPU and
the control electronics was first developed using the tools in QruiseML. Once this digital twin was
ready, it was fed data from previously conducted experiments and the model learning algorithm
described in Fig. 5 was allowed to improve the digital twin based on this experimental data. It could
then correctly predict the previously mischaracterised system parameters and also offer insights
into how to fix them. In a matter of few hours, the system accomplished what would typically
require months of expert physicist time.

Fully differentiable digital twin of quantum
system and control stack
Data from experiments

\ sensitive to parameters
Initialise QPU with chip parameters
design parameters

Learned chip
and control

-

Evaluate MSE Loss and its gradients =
|| experiment - simulated |2 +
penalty for parameter bounds

Initialise control stack Tune chip and control
with cryoscope values stack parameters

Figure 5: Block diagram of model learning for debugging quantum computing hardware. At its core, the
model learning process minimises the distance between experimental data and simulated results by opti-
mising over the space of model parameters. To initialise the optimisation process, we start with a model that
includes only the minimal information already known about the system. The loss function for the optimisa-
tion is the mean squared error (MSE) between the experimental data (denoised and rescaled) and the results
of the simulation of identical experiments. The optimisation utilises efficient gradient-based optimisation
algorithms (e.g., Adam), as the Qruise digital twin implements a differentiable simulation framework. The
optimisation stops when the loss function drops below the required tolerance.

Is Loss <
tolerance?

Simulated
data

The differentiable model of the complete stack includes the following components:

M
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Qubit physics (Hamiltonian & Lindbladian dynamics): frequencies, anharmonicities, couplings,
decay and dephasing effects, crosstalk

« Control & measurement chain characteristics: effects from non-ideal behaviour of electronic
components such as analogue-to-digital converters, filters, and arbitrary waveform gener-
ators

« Signal distortions in cryogenics: deformations introduced by cables carrying microwave pulses
to the QPU inside the cryogenics

« Environmental noise sources: Markovian and non-Markovian noise originating either from the
QPU or the classical control stack

By fitting this comprehensive model to experimental data, the system could isolate the specific
contribution of each component to the observed behaviour. For a more in-depth explanation of
the model learning algorithm, please refer to [21].

5 General purpose Al Physicist — the long term vision

The Qruise Al Physicist presented here can be viewed as a junior PhD student specialising in quan-
tum technologies. And while an infinite supply of junior physicists working 24/7 is of tremendous
value to any R&D effort, we're still just scratching the surface. Going forward, we expect progress
along three maijor axes: increased scientific maturity, increased technical capabilities, and expand-
ing domain expertise.

5.1 Increased scientific maturity

As the Al Physicist progresses from a junior PhD student, to a senior PhD student, post-doc and
eventually senior scientist, we will see gain of functional capabilities. For physicists, the natural way
to represent equations is using symbolic representation. Al Physicists will support direct conversion
from symbolic to numeric models. And when user-supplied models fall short, scientific literature
will be automatically used to fill-in the missing pieces, as well as perform automated model dis-
covery by learning physical relationships from the data (c.f. SINDy [22]). Model discovery will be
made more efficient by incorporating Bayesian considerations in automated data acquisition and
model learning. Model ambiguities, where more than one model fits the data, will be automatically
resolved, and any fear of over-fitting will be similarly tested and resolved.

The end goal is to implement a fully functional Al Physicist capable of executing the entire scientific
process: review literature — create hypothesis — model physics — simulate behaviour — design
prototype — fabricate & test — search for missing phenomena — remodel to fill gaps — repeat
until convergence. When given adequate literature to learn from and adequate tools to execute
the steps above, the Al Physicist should be able to do this for any new field.

5.2 Increased technical capabilities

As the technology expands to new domains, key challenges include:

12
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« Model complexity: Balancing detail with computational tractability.

Multi-physics coupling: Handling of interactions between different physical phenomena.

Uncertainty quantification: Providing reliable confidence estimates.

Real-time constraints: Meeting time requirements for closed-loop control.

The intersection of physics and machine learning is a highly active field with ongoing developments
in various directions. Multi-fidelity modelling, which combines high- and low-fidelity simulations
based on the required level of accuracy, is critical for exploring large design spaces with thousands
of parameters. As mentioned above, uncertainty quantification remains a key challenge and some
researchers are addressing this through the development of robust optimisation methods that
provide guarantees regarding the model’s resilience to manufacturing variations and parameter
inhomogeneities. There is also a lot of focus on generalising these tools through transfer learning
techniques.

5.3 Expanding domain expertise

When expanding the capabilities of the Al Physicist from one domain to the next, it’s often useful
to move into adjacent fields that share a lot of the underlying physical equations for modelling,
use the same kind of equipment for controlling & driving the systems, or have the same kind of
noise & error generating phenomena. For example, starting with quantum computing and quantum
sensing would make nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI)
a natural next step since they share the same quantum mechanical equations used for modelling
system dynamics. Similarly, the photonic devices used in quantum computers share the same kind
of miscalibration errors that occur in other silicon photonics-based technologies.

The success of differentiable physics simulations could thus transform multiple industries by ac-
celerating innovation cycles in several physics R&D sectors [12-17/]. Reducing development costs
through automation is not only a financial incentive, but also a strategic necessity to enable faster
time-to-market of translational technologies. It can also enable the productisation of completely
new technologies previously limited by modelling capabilities.

Eventually, in every lab developing physics-centric technology, from nano-mechanical systems
to fusion reactors, you'll find an Al Physicist working alongside human physicists and engineers,
accelerating our civilisation towards a better future.

6 Conclusions

An Al Physicist represents a fundamental advancement in simulation technology by uniting first-
principles physics with machine learning through differentiable programming. It eliminates the
longstanding simulation-reality gap that has plagued R&D in emerging technologies, enabling au-
tomated model learning, optimal control, and experiment design directly from real data. This
transforms the traditional R&D workflow from manual, expert-driven iterations to an automated,
data-driven, closed-loop cycle.

13
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Our case study in quantum computing illustrates the immediate practical value of this approach:
debugging and optimising a highly complex and sensitive device — a task that would normally
require months of expert effort — was accomplished in mere hours. By creating fully differentiable
digital twins that capture the entire system — from device physics to the control stack — the Al
Physicist not only diagnosed the source of malfunction, but also suggested and validated corrective
measures using only existing data.

The performance gains enabled by differentiable simulations are profound. Gradient-based opti-
misation converges orders of magnitude faster than conventional methods, making it feasible to
work with complex, high-dimensional system models. These capabilities unlock unprecedented
speed and precision across a range of physics-centric fields, including quantum technologies, MR
and silicon photonics. As the technology matures and expands to new domains, it has the potential
to accelerate innovation across all physics-centric deep technology industries.

Compared to legacy simulation platforms and emerging ML-enhanced tools, the Al Physicist frame-
work described here will require a simulation engine that is differentiable by design, vertically in-
tegrated with hardware, and built to support the full data-to-model-to-control workflow. As R&D
increasingly shifts toward deep-tech domains where physics is the bottleneck, this offers both a
scientific and strategic advantage. By accelerating discovery, reducing requirements of scarce hu-
man expertise, and enabling rapid iteration in systems once deemed intractable, Al Physicists will
stand alongside their human counterparts, amplifying their creativity and accelerating collective
progress toward a better future.
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